Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Crit Care Med ; 51(8): 1023-1032, 2023 Aug 01.
Article in English | MEDLINE | ID: covidwho-2268034

ABSTRACT

OBJECTIVES: Studies have suggested intrapulmonary shunts may contribute to hypoxemia in COVID-19 acute respiratory distress syndrome (ARDS) with worse associated outcomes. We evaluated the presence of right-to-left (R-L) shunts in COVID-19 and non-COVID ARDS patients using a comprehensive hypoxemia workup for shunt etiology and associations with mortality. DESIGN: Prospective, observational cohort study. SETTING: Four tertiary hospitals in Edmonton, Alberta, Canada. PATIENTS: Adult critically ill, mechanically ventilated, ICU patients admitted with COVID-19 or non-COVID (November 16, 2020, to September 1, 2021). INTERVENTIONS: Agitated-saline bubble studies with transthoracic echocardiography/transcranial Doppler ± transesophageal echocardiography assessed for R-L shunts presence. MEASUREMENTS AND MAIN RESULTS: Primary outcomes were shunt frequency and association with hospital mortality. Logistic regression analysis was used for adjustment. The study enrolled 226 patients (182 COVID-19 vs 42 non-COVID). Median age was 58 years (interquartile range [IQR], 47-67 yr) and Acute Physiology and Chronic Health Evaluation II scores of 30 (IQR, 21-36). In COVID-19 patients, the frequency of R-L shunt was 31 of 182 COVID patients (17.0%) versus 10 of 44 non-COVID patients (22.7%), with no difference detected in shunt rates (risk difference [RD], -5.7%; 95% CI, -18.4 to 7.0; p = 0.38). In the COVID-19 group, hospital mortality was higher for those with R-L shunt compared with those without (54.8% vs 35.8%; RD, 19.0%; 95% CI, 0.1-37.9; p = 0.05). This did not persist at 90-day mortality nor after adjustment with regression. CONCLUSIONS: There was no evidence of increased R-L shunt rates in COVID-19 compared with non-COVID controls. R-L shunt was associated with increased in-hospital mortality for COVID-19 patients, but this did not persist at 90-day mortality or after adjusting using logistic regression.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Adult , Middle Aged , Prospective Studies , Echocardiography , Hypoxia , Intensive Care Units , Alberta
2.
Ocul Immunol Inflamm ; : 1-4, 2022 Feb 08.
Article in English | MEDLINE | ID: covidwho-2269510

ABSTRACT

BACKGROUND: Varicella zoster reactivation is an increasingly recognised event following mRNA COVID-19 vaccination. In addition, various ocular inflammatory and infectious adverse events following COVID-19 vaccination have been described in the literature. This case report describes acute retinal necrosis (ARN) secondary to varicella zoster virus (VZV) reactivation following COVID-19 mRNA vaccination. CASE DESCRIPTION: A 42-year-old immunocompetent man developed left ARN 12 days following first dose of Pfizer BioNTech mRNA COVID-19 vaccination. Aqueous and vitreous tap polymerase chain reaction testing was positive for VZV. Good visual outcome was achieved with combination therapy, including intravitreal foscarnet, oral valaciclovir and prednisolone, topical dexamethasone and atropine, and barrier retinal laser. Second dose of the vaccine is planned under cover of high-dose oral valaciclovir therapy. CONCLUSION: This case illustrates the possible association between COVID-19 vaccination and potentially blinding VZV reactivation. Therefore, prompt ophthalmic assessment is recommended in patients with visual disturbance following COVID-19 vaccination.

3.
Viruses ; 14(8)2022 08 19.
Article in English | MEDLINE | ID: covidwho-2024294

ABSTRACT

Viruses can evolve to respond to immune pressures conferred by specific antibodies generated after vaccination and/or infection. In this study, an in vitro system was developed to investigate the impact of serum-neutralising antibodies upon the evolution of a foot-and-mouth disease virus (FMDV) isolate. The presence of sub-neutralising dilutions of specific antisera delayed the onset of virus-induced cytopathic effect (CPE) by up to 44 h compared to the untreated control cultures. Continued virus passage with sub-neutralising dilutions of these sera resulted in a decrease in time to complete CPE, suggesting that FMDV in these cultures adapted to escape immune pressure. These phenotypic changes were associated with three separate consensus-level non-synonymous mutations that accrued in the viral RNA-encoding amino acids at positions VP266, VP280 and VP1155, corresponding to known epitope sites. High-throughput sequencing also identified further nucleotide substitutions within the regions encoding the leader (Lpro), VP4, VP2 and VP3 proteins. While association of the later mutations with the adaptation to immune pressure must be further verified, these results highlight the multiple routes by which FMDV populations can escape neutralising antibodies and support the application of a simple in vitro approach to assess the impact of the humoral immune system on the evolution of FMDV and potentially other viruses.


Subject(s)
Foot-and-Mouth Disease Virus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Capsid Proteins/genetics , Epitopes/genetics
4.
Curr Opin Crit Care ; 27(6): 551-552, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1967930
5.
Analyst ; 145(16): 5638-5646, 2020 Aug 21.
Article in English | MEDLINE | ID: covidwho-637680

ABSTRACT

An evaluation of a rapid portable gold-nanotechnology measuring SARS-CoV-2 IgM, IgA and IgG antibody concentrations against spike 1 (S1), spike 2 (S) and nucleocapsid (N) was conducted using serum samples from 74 patients tested for SARS-CoV-2 RNA on admission to hospital, and 47 historical control patients from March 2019. 59 patients were RNA(+) and 15 were RNA(-). A serum (±) classification was derived for all three antigens and a quantitative serological profile was obtained. Serum(+) was identified in 30% (95% CI 11-48) of initially RNA(-) patients, in 36% (95% CI 17-54) of RNA(+) patients before 10 days, 77% (95% CI 67-87) between 10 and 20 days and 95% (95% CI 86-100) after 21 days. The patient-level diagnostic accuracy relative to RNA(±) after 10 days displayed 88% sensitivity (95% CI 75-95) and 75% specificity (95% CI 22-99), although specificity compared with historical controls was 100% (95%CI 91-100). This study provides robust support for further evaluation and validation of this novel technology in a clinical setting and highlights challenges inherent in assessment of serological tests for an emerging disease such as COVID-19.


Subject(s)
Antibodies, Viral/analysis , Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Serologic Tests/methods , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Cohort Studies , Coronavirus Infections/blood , Coronavirus Nucleocapsid Proteins , False Negative Reactions , Female , Gold/chemistry , Humans , Immunoglobulin A/analysis , Immunoglobulin A/immunology , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Immunoglobulin M/analysis , Immunoglobulin M/immunology , Male , Metal Nanoparticles/chemistry , Middle Aged , Nucleocapsid Proteins/immunology , Pandemics , Phosphoproteins , Pneumonia, Viral/blood , SARS-CoV-2 , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL